Relative Galois Module Structure of Rings of Integers of Absolutely Abelian Number Fields

نویسنده

  • HENRI JOHNSTON
چکیده

We define an extension L/K of absolutely abelian number fields to be Leopoldt if the ring of integers OL of L is free as a module over the associated order AL/K of L/K. Furthermore, we say that an abelian number field K is Leopoldt if every extension L/K with L/Q abelian is Leopoldt. In this paper, we make progress towards a classification of Leopoldt number fields and extensions. The two main results are as follows. Let Q denote the nth cyclotomic field and Q its maximal real subfield. Let p be an odd prime and n ∈ N. Then (i) any sub-extension of Q(pn)/Q of degree a power of p is Leopoldt and (ii) Q n)+ is Leopoldt. In addition, we give a partial classification of Leopoldt subfields of Q n) and note that this classification is in fact complete when p− 1 is square-free.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Capitulation for Locally Free Class Groups of Orders of Abelian Group Algebras over Number Fields

We prove a capitulation result for locally free class groups of orders of abelian group algebras over number fields. As a corollary, we obtain an “abelian arithmetically disjoint capitulation result” for the Galois module structure of rings of integers.

متن کامل

Nontrivial Galois module structure of cyclotomic fields

We say a tame Galois field extension L/K with Galois group G has trivial Galois module structure if the rings of integers have the property that OL is a free OK [G]-module. The work of Greither, Replogle, Rubin, and Srivastav shows that for each algebraic number field other than the rational numbers there will exist infinitely many primes l so that for each there is a tame Galois field extensio...

متن کامل

Deformation of Outer Representations of Galois Group

To a hyperbolic smooth curve defined over a number-field one naturally associates an "anabelian" representation of the absolute Galois group of the base field landing in outer automorphism group of the algebraic fundamental group. In this paper, we introduce several deformation problems for Lie-algebra versions of the above representation and show that, this way we get a richer structure than t...

متن کامل

Capitulation for Locally Free Class Groups of Orders of Group Algebras over Number Fields

We prove a capitulation result for locally free class groups of orders of group algebras over number fields. This result allows some control over ramification and so as a corollary we obtain an “arithmetically disjoint capitulation result” for the Galois module structure of rings of integers.

متن کامل

On the Relative Galois Module Structure of Rings of Integers in Tame Extensions

Let F be a number field with ring of integers OF and let G be a finite group. We describe an approach to the study of the set of realisable classes in the locally free class group Cl(OF G) of OF G that involves applying the work of the second-named author in the context of relative algebraic K theory. For a large class of soluble groups G, including all groups of odd order, we show (subject to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006